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We revisit the scaling properties of a model for nonequilibrium wetting �Phys. Rev. Lett. 79, 2710 �1997��,
correcting previous estimates of the critical exponents and providing a complete scaling scheme. Moreover, we
investigate a special point in the phase diagram, where the model exhibits a roughening transition related to
directed percolation. We argue that in the vicinity of this point evaporation from the middle of plateaus can be
interpreted as an external field in the language of directed percolation. This analogy allows us to compute the
crossover exponent and to predict the form of the phase transition line close to its terminal point.
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I. INTRODUCTION

While wetting of surfaces at or near thermal equilibrium
is well understood �1�, the study of wetting phenomena far
from equilibrium is a challenging new field. In the past de-
cade there have been numerous theoretical studies addressing
the question whether nonequilibrium conditions may lead to
different physical phenomena near the wetting transition.
Most of these studies are based on particular lattice models
�2–4� or phenomenological Langevin equations �5�. They all
have in common that the wetting layer is modeled by a non-
equilibrium growth process of a d-dimensional interface
combined with a hard-core wall which represents the surface
of the substrate.

The theoretical interest in nonequilibrium wetting stems
from the fact that various scale-invariant properties are found
to be universal, i.e., they are dictated by the symmetries of
the model irrespective of microscopic details. For a growth
process without a substrate �free interface�, the most promi-
nent universality classes are the Edwards Wilkinson �EW�
and the Kardar-Parisi-Zhang �KPZ� universality classes
�6,7�. These classes describe the asymptotic scaling behavior
of the roughening interface and are characterized by a certain
set of exponents and scaling functions �8�. In the correspond-
ing Langevin equations, the KPZ class differs from the EW
class by a nonlinear term that breaks reflection symmetry in
height direction. In experimental setups, where this symme-
try is generally broken, KPZ behavior is expected to be ge-
neric while linear growth �EW behavior� can be considered
as a special case.

Nonequilibrium wetting is usually modeled as a stochastic
growth process on top of a hard-core substrate at height zero.
Varying the growth rate the presence of a substrate induces a
wetting transition from a bound to a moving phase. Concern-
ing the scaling properties of the interface the substrate plays
the role of a boundary: It does not change the universality
class of the growth process itself, instead it imposes addi-
tional features. More specifically, it gives rise to an addi-
tional order parameter and an associated critical exponent.
The situation is similar as, e.g., in the Ising model, where a
boundary induces an additional surface critical exponent. We
will refer to these extended universality classes as the
bounded Edwards-Wilkinson �bEW� and the bounded

Kardar-Parisi-Zhang �bKPZ� class. For KPZ-type growth,
however, where the reflection symmetry is broken, it turns
out that the new exponent also depends on the sign of the
nonlinear term. Therefore, one has to distinguish two differ-
ent bounded KPZ classes, which we shall denote by the ac-
ronyms bKPZ+ and bKPZ− according to the sign of the non-
linear term.

One of these models for nonequilibrium wetting, which
has been studied intensively in the past, was introduced a
decade ago in Ref. �2�. It is a restricted solid-on-solid
�RSOS� growth process on a one-dimensional lattice �see
Sec. II for details�, where the substrate is introduced by im-
posing the condition that all heights have to be non-negative.
The phase diagram of this model is shown in Fig. 1. Depend-
ing on the growth rate q and the evaporation rate p, the
model exhibits a wetting transition from a bound to a moving
phase. For p=1 the transition was shown to belong to the
bEW universality class, while for p�1 the transition belongs
to one of the two bounded KPZ classes. However, the re-
ported estimates for the critical exponents are still contradic-
tory. One aim of the present paper is to clarify this issue and
to confirm KPZ scaling along the whole line except for
p=0 and p=1.

As shown in the figure, the transition line ends at the left
terminal point at p=0 and qc

DP=0.3993�1�. In this point the
wetting model reduces to a special growth process which
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FIG. 1. �Color online� Phase diagram of the wetting model with
r=1.
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was studied earlier by Alon et al. �9� and has the special
property that evaporation from completed layers is forbid-
den. This means that the interface cannot have a negative
growth velocity and therefore the presence of a wall makes
no difference. Varying q while keeping p=0 the model dis-
plays a roughening transition at q=qc

DP. It was shown that the
dynamics of sites at the bottom layer can be related to a
directed percolation �DP� �10� process, which is another
class of nonequilibrium phase transitions different from both
bEW and bKPZ. Extending this analogy, it was argued that
the dynamics of the first few layers may be described in
terms of unidirectionally coupled growth processes �11,12�.

An open question, which will be addressed in the present
work, concerns the crossover from DP to the bKPZ− class in
the vicinity of the DP point. In order to describe this cross-
over, we propose to interpret evaporation from the middle of
a plateau with a small rate p�1 as a weak external field in
the language of DP. This allows us to express the crossover
exponent, which determines the characteristic shape of the
transition line as it approaches the DP point, in terms of the
response exponent of directed percolation.

The paper is organized as follows. In Sec. II we estimate
the critical exponents for the model for a wetting transition
by off-critical, time-dependent, and finite-size simulations.
Moreover, we summarize a scaling picture for the bKPZ±
and bEW classes. Section III is devoted to the crossover
from DP class �p=0� to bKPZ− class �0� p�1� in the vi-
cinity of the left terminal point of the transition line. Finally,
we demonstrate that the proposed interpretation of the wet-
ting model as a DP process with a external field is in agree-
ment with numerical results.

II. ESTIMATION OF THE CRITICAL EXPONENTS

A. Definition of the model

The model for nonequilibrium wetting proposed in Ref.
�2� is defined on a one-dimensional lattice with L sites and
periodic boundary conditions. Each site i is associated with a
variable hi=0,1 ,2 ,3. . . which describes the height of the in-
terface at site i. The interface obeys the restricted solid-on-
solid �RSOS� condition

�hi − hi±1� � 1, �1�

i.e., the heights at neighboring sites may differ by at most
one unit.

The interface evolves in time by random-sequential up-
dates as follows. For each update a site i of the lattice is
randomly chosen and one of the following processes is se-
lected �cf. Fig. 2�: �a� Deposition of a particle �hi→hi+1�
with rate q; �b� evaporation of a particle �hi→hi−1� at the
edges of plateaus with rate r; �c� evaporation of a particle
�hi→hi−1� from the middle of a plateau with rate p.

A move is rejected if it would violate the RSOS condition.
Moreover, the substrate is introduced by imposing the re-
striction that evaporation at zero height is forbidden. Each
run starts with a flat interface at zero height. Without loss of
generality we set r=1.

The phase diagram of the model is shown in Fig. 1. The
transition is controlled by the growth rate q. Above the criti-

cal line the model is in the wet or moving phase, where the
interface roughens and propagates at constant velocity. Be-
low the critical line the interface remains bound and fluctu-
ates close to the wall. The value of the evaporation rate p
determines the type of the phase transition. From the physi-
cal point of view small values of p are more realistic since
evaporation at the edges of a plateau is usually more likely
than in the middle.

The order parameter for the wetting transition is the den-
sity of sites at zero height n0. In the bound phase near the
transition line n0 goes to zero as

n0 � �qc − q��, �2�

where qc�p� is the transition point and � is a critical expo-
nent. Similarly, the interface width w diverges at the transi-
tion as

w � �qc − q�−�, �3�

where � is another critical exponent.
The vertical line p=0 is special in so far as a layer, once

completed, cannot evaporate again. As already mentioned in
the introduction, this special case was studied in Ref. �9� and
the exponent � was found to be in agreement with the DP
exponent �=0.276 49�4� �13�. Moreover, it was shown nu-
merically that for p=0 the interface width diverges logarith-
mically near the critical point �14�, which is consistent with
the critical exponent �=0.

Another special case is p=1, where the wetting transition
belongs to the bounded Edwards-Wilkinson �EW� class. In
this case the stationary state in the bound phase can be com-
puted exactly by transfer matrix methods �2�, which allows
one to calculate the critical exponents �=1 and �=1 /3.

For 0� p�1 the model shows a different critical behavior
as in the equilibrium case p=1. The first estimates reported
in �2�, using off-critical numerical simulations at p=0.05, are
�=1.51�6� and �=0.41�3�. The purpose of this section is to
revise these values, confirming the conjecture that in this
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FIG. 2. Transition rates for the wetting model.
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regime the transition belongs to the bKPZ− class. Similarly,
for p�1 the transition is expected to belong to the bKPZ+
class.

B. Off-critical simulations

First we calculate the exponents � and � by means of
off-critical simulations. To reasons to be explained below, we
use a very small value p=0.001. From the graphs shown in
Fig. 3 we obtain

� = 1.67�5�, � = 0.41�5� . �4�

We believe that this estimate of � is larger than the one
obtained previously in �2� because of a crossover from EW
to KPZ behavior. This crossover is known to be notoriously
slow and may cause the impression as if the critical expo-
nents depended continuously on p, varying from the EW
exponent �=1 and some values larger than one. However, it
seems that such an estimate is just an effective exponent
measured in the crossover regime. As one approaches the
critical line for p�1 and increases the numerical effort the
effective exponent grows and slowly converges to the “true”
KPZ exponent. This crossover from EW to KPZ is expected
to become more pronounced if we move away from the equi-
librium case p=1. For instance, with simulations at p=0.9
we would obtain the effective exponent �=1.02�5�. That is
why we chose such a small value for p.

C. Finite-size simulations

According to the standard scaling picture of nonequilib-
rium phase transitions, the spatial correlation length �� near
the critical point diverges as

�� � �qc − q�−��. �5�

For p=0, where the model exhibits DP behavior, one obtains
the DP values ���1.10. For 0� p�1, where the model is in
the bKPZ− class, we observe that the critical point, where
the velocity of the free interface is zero, varies strongly with
the system size. For instance, at p=0.001 for L=128 and
4096 we found qc�L�=0.425�1� and 0.4295�1�. Therefore, it
is near at hand to postulate the relation

qc�	� − qc�L� � L−1/��, �6�

where qc�	� is the extrapolated value of the critical
threshold. With L=64, 128, 256, 512, and 1024 we obtain
qc�	�=0.4295�3� and ��=1.00�3�. The data leading to
these results, with 
=qc�	�−qc�L� as a function of L, is
shown in Fig. 4. We note that the extrapolated value
qc�	�=0.4295�3� already coincides with the value
qc�4096�=0.4295�1� within error bars.

For finite growing interfaces, after an initial transient, the
correlation length �� becomes of the same order as the sys-
tem size. When this happens, the interface width saturates.
The value at which the interface width saturates depends on
L and scales as �15�

wsat�L� � L�, �7�

where wsat denotes the saturation value of the interface width
and � is the so-called roughness exponent. This relation is
valid above the critical point and at the critical point for
p�0. In one dimension one has �=1 /2 for both the KPZ
and the EW class �15�. Equations �7�, �5�, and �3� imply the
relation

� = ��� . �8�

From ��=1.00�3� we obtain �=0.50�1�, which is signifi-
cantly larger than the numerical estimate in the previous sub-
section.

D. Time-dependent simulations

Likewise, the temporal correlation length �� diverges
close to criticality as

�� � �qc − q�−�� , �9�

where �� is the temporal critical exponent. From this relation
and Eq. �2� we can conclude that the bottom layer density n0
decays at criticality according to a power law

n0 � t−� �10�

with
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FIG. 3. �Color online� Off-critical simulations. Density of sites
with height zero n0 �left� and the interface width w �right� as func-
tions of the distance from the critical point qc=0.4295�1�. With
p=0.001, L=4096, and 100 independent realizations.
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FIG. 4. �Color online� Finite-size simulations. The figure shows
the difference 
 between the finite-size critical point qc�L� and the
extrapolated critical point qc�	�=0.4295�3� as a function of L for
p=0.001.
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� = �/�� . �11�

The exponent � was measured in Ref. �4�, simulating the
so-called single step model which is known to belong to the
bKPZ− class. Our result �=1.15�3�, which is shown in Fig.
5, is compatible with their estimate �=1.184�10�.

The dynamical exponent z=�� /��, defined by

�� � ��
z , �12�

for the KPZ class is z=3 /2 �15�. With z=3 /2 and our previ-
ous estimate of ��, we obtain �� =1.50�5�. Together with
�=1.15�3� this means that �=1.73�6�.

We note that both values �=1.73�6� and �=0.50�2�, ob-
tained from finite-size and time-dependent simulations, are
larger than the results obtained from off-critical simulations
�=1.67�5� and �=0.41�5�. We believe that these discrepan-
cies can be traced back to the fact that the EW-KPZ cross-
over is more influential in off-critical simulations.

E. Scaling picture for equilibrium and nonequilibrium wetting

Let us now summarize the scaling picture and the values
of the critical exponents. One-dimensional wetting models,
as the one defined in Ref. �2�, are characterized by four in-
dependent critical exponents, namely, three bulk exponents
� ,�� ,�� which take simple fractional values, and one expo-
nent � associated with the order parameter n0, whose value is
only known numerically. These exponents, together with re-
lated exponents �=��� and �=� /��, are listed in Table I.
The scaling hypothesis states that any quantities are invariant
under the scaling transformation

r� → br�, t → bzt, w → b�w ,

n0 → b−�/��n0, 
 → b−1/��
 , �13�

where b is a scaling factor and 
=q−qc denotes the distance
from criticality.

The three bulk exponents can be determined as follows.
For p�0 two of them, namely, the exponents �=� /�� and
z=�� /��, are just the well-known bulk exponents of the EW

or KPZ universality classes. To obtain the third exponent, let
us consider the propagation velocity of a free interface. For
p�0, the interface velocity varies linearly with the distance
from the critical line, i.e.,

v � q − qc. �14�

Since the velocity is the temporal derivative of the mean
height, which has the same scaling dimension as the width w,
we expect that w��q−qc���. With Eqs. �12� and �7� we ar-
rive at the scaling relation

�� � �q − qc�−1/�z−��, �15�

hence

�� =
1

z − �
. �16�

This argument is handwaving as it uses the properties of the
free interface to predict the scaling properties of the wetting
transition, but it is in agreement with all numerical observa-
tions. For example, for the KPZ case we have ��=1, in
agreement with our numerical result, and for the EW case
one obtains ��=2 /3, in agreement with an exact calculation
�4�.

We note that the determination of � �or likewise �� in the
KPZ regime remains a numerically challenging task. Cur-
rently the most precise estimates come from the single-step
model investigated in �4�, reporting the values �=1.184�10�
for the bKPZ− and �=0.228�5� for the bKPZ+ classes. The
estimates obtained in the present simulations are consistent
but not as precise, indicating that KPZ behavior of the model
introduced in Ref. �2� is not as “clean” as in the single-step
model.

III. LIMIT p\0: INTERPRETATION AS A DP PROCESS
IN AN EXTERNAL FIELD

As mentioned in the preceding section, the nonequilib-
rium wetting model introduced in Ref. �2� includes a special
case p=0, where it exhibits a transition belonging to the
directed percolation �DP� universality class. The crossover
from bKPZ− to DP has not been studied so far.

The case p=0 is special in so far that a layer, once com-
pleted, cannot evaporate again. This means that the process

TABLE I. List of the critical exponents. Most of the DP expo-
nents in the first line come from �13�, the exceptions are � and �
that come from �14�. The bEW and bKPZ exponents come from an
exact result �2� and the best numerical estimates for the exponent �
obtained in �4� respectively combined with the scaling picture de-
veloped here.

Case � z �� �� � � �

DP 0 1.58 1.10 1.73 0 0.159 0.276

bKPZ− 1 /2 3 /2 1 3 /2 1 /2 1.184�10� 1.776�15�
bEW 1 /2 2 2 /3 4 /3 1 /3 3 /4 1

bKPZ+ 1 /2 3 /2 1 3 /2 1 /2 0.228�5� 0.342�8�10
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FIG. 5. �Color online� Time-dependent simulations. The order
parameter n0 at the critical point qc=0.4295�1� as a function of the
number of Monte Carlo steps t with p=0.001, L=8192, and 800
independent realizations.
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does not feel the hard-core wall any more; it may be re-
moved without changing the properties of the model. It was
shown in Ref. �9� that the sites at the actual bottom layer
may be interpreted as the active sites of a DP process. This
mapping is exact without RSOS condition but it remains
effectively valid when the RSOS condition is imposed.

The key observation of the present work is that the pro-
cess controlled by the parameter p, namely, evaporation from
the middle of a plateau, corresponds to spontaneous creation
of active sites in the language of DP. In DP such a sponta-
neous creation of activity is interpreted as an external field
conjugate to the order parameter and the corresponding scal-
ing laws are well understood. In this section we use this
analogy to predict the properties of the crossover from DP to
bKPZ− in the nonequilibrium wetting process.

A. Mapping the contact process in an external field to
nonequilibrium wetting

To understand the mapping between nonequilibrium wet-
ting and DP in more detail, let us first consider the contact
process �CP� �13� in an external field h, which is defined by
the following dynamical rules with random-sequential up-
dates:

1 → 0 with rate 1,

0 → 1 with rate h ,

01�10� → 11�11� with rate /2. �17�

For h=0 one retrieves the usual CP which exhibits a DP
transition. For h�0 this transition is destroyed because the
model no longer has an absorbing state.

Let us now compare this process with the unrestricted
variant of the growth model introduced in �9�, which evolves
according to the following dynamical rules:

hi → hi + 1 with rate 1,

hi → 0 with rate h ,

hi → min	hi,hi+1
 with rate /2,

hi → min	hi,hi+1
 with rate /2. �18�

It is straightforward to verify that the variable �i=�hi,0
fol-

lows exactly the dynamical rules given in Eq. �17� and that
the order parameter of the transition is the density of sites at
the bottom layer.

For the restricted variant of the model introduced in �9�
the above mapping is no longer exact. However, we argue
that an external field h can be introduced in the restricted
model in an effective way by modifying the dynamical rules
according to Fig. 6. This modification is motivated as fol-
lows. In the unrestricted version the likelihood for evapora-
tion from the middle of a plateau does not depend on the
actual configuration of the interface in the vicinity. To estab-
lish a similar independence in the restricted version, we in-
troduce an additional evaporation rate h which is the same

for all interface configurations that respect the RSOS condi-
tion after an evaporation event. As usual, evaporation at zero
height is forbidden.

Obviously, the dynamical rules listed in Fig. 6 can be
related to the wetting model by identifying the parameters

q = 1, r =  + h, p = h . �19�

Since h�0, this relation is valid only in the region p�r.
However, the mapping between the two models is not one-
to-one because their transition rates are slightly different.
While in the dynamical rules of Fig. 6 evaporation with one
neighbor at the same height happens with rate  /2+h, the
corresponding event in the wetting model takes place with
rate +h. We expect that this minor difference does not
change the critical behavior. Therefore, we conclude that the
interpretation of evaporation in the middle of plateaus as an
external field in the language of DP is still valid even in the
restricted variant.

B. Prediction of the form of the critical line in the limit p\0

We now demonstrate that the conjecture presented above
can be used to predict the form of the phase transition line in
the vicinity of the DP transition point �p ,q�= �0,0.3993�1��.
To this end we consider the stationary values of the order
parameter n0 along the line

q = qc
DP�1 − p� . �20�

Using the parameter h which is related to q and p by
q=1 / ��qc

DP�−1+h� and p=h / ��qc
DP�−1+h� we define the field

exponent � by the asymptotic power law

n0 � h�, �21�

which is expected to be valid for small h. With numerical
simulations we obtain the value �=0.121�5�. This value dif-
fers from the DP exponent �=0.276 49�4� measured in ver-
tical direction along the line p=0. Therefore, approaching
the DP point from different directions we find two different
exponents. The smaller one �with a slower decay of n0� is
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FIG. 6. Transition rates for the restricted model.
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expected to dominate all other directions except the vertical
one. This allows us to conclude that in horizontal direction,
i.e., for q=qc

DP and small values of p, the order parameter
vanishes as

n0 � p�. �22�

This equation together with Eq. �2� implies

qc − qc
DP � py , �23�

where y=� /�=0.44�2� is a crossover exponent.
The crossover exponent describes how the critical line

approaches the DP point in the sense that it determines the
critical line concavity near the DP point. In fact, plotting
qc−qc

DP versus p in a double-logarithmic plot �see Fig. 7� one
obtains a straight line with the slope 0.43�2�, which coincides
with the value of y. This means that the interpretation of
evaporation from the middle of a plateau as an external field
in the language of DP yields the correct crossover exponent
describing the curvature of the phase transition line.

C. Critical behavior of the first few layers

So far we considered only the density of sites at the bot-
tom layer n0. Similarly one can study the density of sites mk
whose heights are less or equal than k. As shown in �11,12�,
these order parameters vary in vertical direction �p=0� by
power laws mk��qc

DP−q��k with individual exponents
�0 ,�1 ,�2 , . . ., where �0=� is the ordinary density exponent
of DP. In the same way we can now define the exponents �k
by

mk � h�k � p�k, �24�

where �0 is just the exponent � of the preceding subsection.
As an example, Fig. 8 shows numerical measurements of

mk for the restricted model. The estimates of �k are listed in
Table II. All these values are in fair agreement with the nu-
merical estimates for the unidirectionally coupled DP re-
ported in �12�.

IV. CONCLUSION

In this paper we have presented improved estimates of the
critical exponents for the nonequilibrium wetting model of

Ref. �2� in the parameter range 0� p�1. We have derived
relations between the exponents, in agreement with the nu-
merical results, and used them to give a complete set of the
exponents along the whole transition line �see Table I�.

This work is focused on the case 0� p�1, where the
wetting transition belongs to the bKPZ− class. For p�1,
where the transition belongs to the bKPZ+ class, we could
do a similar analysis but we would have to use extremely
large values of p to overcome crossover effects, but numeri-
cal simulations turn out to be inefficient in this limit.

Presently, the most reliable results for the critical expo-
nent � of the bounded KPZ classes were measured using the
so-called single step model �4�. This model has a moving
wall and is always exactly at the critical point. However, the
single step model does not allow one to perform off-critical
simulations. This is the reason why the wetting model is
more suitable to confirm the scaling relations discussed in
this paper.

The nonequilibrium wetting model introduced in �2� has
another interesting feature, namely, a special transition point
at p=0, where the critical behavior belongs to the directed
percolation universality class. Surprisingly, even for very
small p, the critical behavior changes entirely. For example,
the exponent �, which describes the density of sites at zero
height, jumps from the DP value ��0.28 for p=0 to a large
value ��1.78 of the bKPZ− class. To our knowledge, this is
the only case where the order parameter exponent � is larger
than one. This is due to the fact that the interface at criticality
has only very few contact points where it touches the wall.
This number is so small that the correlation length �� of the

TABLE II. Numerical estimates of the exponents �k.

Model �0 �1 �2

Unrestricted 0.107�2� 0.040�3� 0.014�2�
Restricted 0.104�5� 0.039�5� 0.008�5�
Wetting 0.121�5� 0.047�5� 0.009�5�
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interface fluctuations becomes smaller than the average dis-
tance between two contact points �4�, which is equal to the
inverse of the density of sites at the bottom layer.

The main result of this work is the conjecture that a wet-
ting process for small p can be interpreted as a DP process in
an external field. This conjecture allows us to interpret the
crossover from the DP class to the bKPZ− class as a small
external field h that eliminates the DP transition. Moreover, it
is consistent with the scaling picture and can be confirmed

by numerical simulations. Calculating the corresponding
crossover exponent y=� /�, we can predict the shape of the
critical line near p=0.
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